An Axiomatization of the Lattice of Higher Relative Commutants of a Subfactor
نویسندگان
چکیده
We consider certain conditions for abstract lattices of commuting squares, that we prove are necessary and sufficient for them to arise as lattices of higher relative commutants of a subfactor. We call such lattices standard and use this axiomatization to prove that their sublattices are standard too. We consider a method for producing sublatties and deduce from this and [Po5] some criteria for bipartite graphs to be graphs of subfactors.
منابع مشابه
Fuss-catalan Algebras and Chains of Intermediate Subfactors
We give a complete description of the generalized FussCatalan algebras: colored generalizations of the TemperleyLieb algebras, introduced by D. Bisch and V. Jones. For these chains of finite dimensional algebras, we describe a basis in terms of generators, and give a complete description, including the dimensions, of the irreducible representations. We then consider an arbitrary subfactor conta...
متن کاملCommutators Associated to a Subfactor and Its Relative Commutants
A central problem in subfactor theory is the classification of inclusions of II1 factors, N ⊆M . An important invariant for such an inclusion is the lattice of higher relative commutants, {M ′ i ∩Mj}i,j , known as the standard invariant, contained in the Jones tower N ⊆ M ⊆ M1 · · ·. There are several approaches to studying the standard invariant, namely paragroups [3], λ-lattices [8], and plan...
متن کاملSimple axiomatization of reticulations on residuated lattices
We give a simple and independent axiomatization of reticulations on residuated lattices, which were axiomatized by five conditions in [C. Mureşan, The reticulation of a residuated lattice, Bull. Math. Soc. Sci. Math. Roumanie 51 (2008), no. 1, 47--65]. Moreover, we show that reticulations can be considered as lattice homomorphisms between residuated lattices and b...
متن کاملQuantum Groups Acting on N Points, Complex Hadamard Matrices, and a Construction of Subfactors
We define subfactors of the form (B0 ⊗ P ) G ⊂ (B1 ⊗ P ) , where G is a compact quantum group acting on a Markov inclusion of finite dimensional algebras B0 ⊂ B1 and acting minimally on a II1 factor P . Their Jones towers and their higher relative commutants can be computed by using extensions of Wassermann’s techniques. These subfactors generalise the group-subgroup subfactors, the diagonal su...
متن کاملRelative annihilators and relative commutants in non-selfadjoint operator algebras
We extend von Neumann’s Double Commutant Theorem to the setting of nonselfadjoint operator algebras A, while restricting the notion of commutants of a subset S of A to those operators in A which commute with every operator in S. If A is a completely distributive commutative subspace lattice algebra acting on a Hilbert space H, we obtain an alternate characterization (to those of Erdos–Power and...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2001